skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zlokapa, Alexander"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Characterizing how neural network depth, width, and dataset size jointly impact model quality is a central problem in deep learning theory. We give here a complete solution in the special case of linear networks with output dimension one trained using zero noise Bayesian inference with Gaussian weight priors and mean squared error as a negative log-likelihood. For any training dataset, network depth, and hidden layer widths, we find non-asymptotic expressions for the predictive posterior and Bayesian model evidence in terms of Meijer-G functions, a class of meromorphic special functions of a single complex variable. Through novel asymptotic expansions of these Meijer-G functions, a rich new picture of the joint role of depth, width, and dataset size emerges. We show that linear networks make provably optimal predictions at infinite depth: the posterior of infinitely deep linear networks with data-agnostic priors is the same as that of shallow networks with evidence-maximizing data-dependent priors. This yields a principled reason to prefer deeper networks when priors are forced to be data-agnostic. Moreover, we show that with data-agnostic priors, Bayesian model evidence in wide linear networks is maximized at infinite depth, elucidating the salutary role of increased depth for model selection. Underpinning our results is a novel emergent notion of effective depth, given by the number of hidden layers times the number of data points divided by the network width; this determines the structure of the posterior in the large-data limit. 
    more » « less
  2. Abstract Academic researchers, government agencies, industry groups, and individuals have produced forecasts at an unprecedented scale during the COVID-19 pandemic. To leverage these forecasts, the United States Centers for Disease Control and Prevention (CDC) partnered with an academic research lab at the University of Massachusetts Amherst to create the US COVID-19 Forecast Hub. Launched in April 2020, the Forecast Hub is a dataset with point and probabilistic forecasts of incident cases, incident hospitalizations, incident deaths, and cumulative deaths due to COVID-19 at county, state, and national, levels in the United States. Included forecasts represent a variety of modeling approaches, data sources, and assumptions regarding the spread of COVID-19. The goal of this dataset is to establish a standardized and comparable set of short-term forecasts from modeling teams. These data can be used to develop ensemble models, communicate forecasts to the public, create visualizations, compare models, and inform policies regarding COVID-19 mitigation. These open-source data are available via download from GitHub, through an online API, and through R packages. 
    more » « less